Phi 201: Precept 8

Ellie Cohen eliya.cohen@princeton.edu April 16, 2018

Exercise 1a. The following has three invalid inferences. Which steps are invalid and why?

1	(1)	$\neg \exists x \forall y (Fx \to Gy)$	А
2	(2)	$\neg \forall y (Fa \to Gy)$	А
2	(3)	$\neg(Fa \to Gb)$	$2 \mathrm{UE}$
2	(4)	$Fa \wedge \neg Gb$	3 SI(S) MC
2	(5)	Fa	$4 \wedge \mathrm{E}$
2	(6)	$\forall xFx$	5 UI
1	(7)	$\forall xFx$	$1,2,6 \ \text{EE}$

Exercise 1b. The following has one invalid inference. Locate which one, say why, and propose a fix.

1	(1)	$\exists y (Fa \to Gy)$	А
2	(2)	$Fa \rightarrow Gb$	А
3	(3)	$\neg \exists y G y$	А
3	(4)	$\forall y \neg Gy$	3 SI(S) QDM
3	(5)	$\neg Gb$	4 UE
2, 3	(6)	$\neg Fa$	$2,5 \mathrm{MT}$
2,3	(7)	$Fa \rightarrow Gb$	6 SI(S) NP
1,3	(8)	$Fa \rightarrow Gb$	$1,2,7 \ \text{EE}$

Exercise 2. Note that \forall distributes over \land and \exists distributes over \lor . Give examples that satisfy each of the following theorems:

1.
$$\forall x(Fx \land Gx) \dashv \forall xFx \land \forall xGx$$

2. $\exists y(Fy \lor Gy) \dashv \exists yFy \lor \exists yGy$

PHI 201

Exercise 3. Note the following distributions of \forall over \lor :

 $\forall xFx \lor \forall xGx \vdash \forall x(Fx \lor Gx) \text{ but } \forall x(Fx \lor Gx) \not\vdash \forall xFx \lor \forall xGx$

Give an example that satisfies the theorem and a counterexample to the invalidity.

Exercise 4. Note the following distribution of \exists over \land :

 $\exists y(Fy \land Gy) \vdash \exists yFy \land \exists yGy \text{ but } \exists yFy \land \exists yGy \not\vdash \exists y(Fy \land Gy)$

Give an example that satisfies the theorem and a counterexample to the invalidity.

Set Theory

 $x \in y$: x is an element of y $x \subseteq y$: x is a subset of y. $x \subseteq y$ iff $\forall z (z \in x \rightarrow z \in y)$.

A few axioms of set theory

- 1. axiom of extensionality: $\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y))$ use the law of identity to prove the converse
- 2. null set axiom: $\exists x \forall y (y \in x \leftrightarrow y \neq y)$

Informal Arguments

We define $A \cap B$ to be the set of elements that are in both A and B, and $A \cup B$ to be the set of elements that are in either A or B. That is:

- $\forall x (x \in A \cap B \leftrightarrow (x \in A \land x \in B))$
- $\forall x (x \in A \cup B \leftrightarrow (x \in A \lor x \in B))$
- 1. Prove that $A \cap B = B \cap A$ (i.e. \cap is commutative)
- 2. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$